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 Abstract: This article presents a method for identification of induction machine 
parameters using artificial neural networks. The induction machine is a nonlinear multivariable 
dynamic system with parameters that vary with temperature, frequency, saturation and 
operating point. Considering that neural networks are capable of handling time varying 
nonlinearities due to their own nonlinear nature, they are suitable for application in induction 
machine systems. 
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 1. INTRODUCTION 
 

Induction motor control systems are known to be extremely nonlinear control 
systems, because of induction motor parameter variability under different conditions. 
Heating of motor windings depends on stator and rotor currents leading to variability 
of stator and rotor resistances. Variable mutual inductance is a consequence of 
different flux levels of the motor. This is very important from the viewpoint of field 
oriented control systems. Most types of field oriented control systems are sensitive to 
errors resulting from non-constant parameters and furthermore, do not give an accurate 
representation of the machine under consideration. 

In the past, many methods have been developed for estimations of induction 
machines parameters. Some of these methods are based on artificial neural networks 
(ANN) that replace the adaptive model of an induction machine. The basic structure of 
an adaptive scheme for stator or rotor resistance identification is shown in fig.1. This 
scheme is based on the model reference adaptive system (MRAS) [1].  
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Fig. 1. ANN-based parameter identification. 

 
2. ANN-BASED INDIRECT CONTROL SYSTEM. 
 
The MRAS theory is utilized in order to estimate the rotor speed of induction 

motor. The rotor flux space-vector is estimated in the reference frame by the voltage 
model (reference model) and by the ANN-based model (adaptive model) of the 
induction motor.  

In classical induction machine control systems, knowledge of the controlled 
system in the form of a set of algebraic and differential equations is required. This set 
of equations, written in a synchronously rotating reference frame is as follows [2]: 
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where Tr is the rotor time constant and s is the Laplace operator (=d/dt) and us is: 
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The following example shows a method of the stator resistance identification 
in the IRFO control system (fig.2) [3]. Conventionally, the current model is used as the 
adaptive model because it is the rotor speed-dependent one. The difference between 
flux space-vectors estimated using the two ways is then used in an adaptive mechanism 
that outputs the estimated value of the rotor speed and adjusts the adaptive model until 
good performances are obtained. The inputs to the reference model are the direct- and 
quadrature-axis stator voltages and currents of the induction motor and the angular 
stator frequency ωe. The outputs of the reference model are the components of the 
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rotor flux space-vector in the d, q reference frame, which can be obtained from 
equation (2) as follows [4]: 
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Fig. 2. ANN-based indirect rotor field-oriented control system. 

 
3. ANN-BASED STATOR RESISTANCE 
 
Equations (3) and (4) determine the reference model as shown in fig. 3. These 

equations do not contain the rotor speed. However, equation (1) contains the rotor flux 
space-vector and the rotor speed as well. This is the equation for the adaptive model. 
Rewriting (1) to give the rotor flux components in the d,q reference frame yields: 
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Equations (5) and (6) contain the rotor speed, which is generally changing, and 
the intent is to estimate this speed by using an ANN. 
 

 
Fig. 3. Stator resistance tuning based on ANN 

 
When there is no mismatch between the actual and identified parameters of the 

induction motor, then the errors εd and εq (fig. 3) are zero in the steady state. In this 
case, the rotor speed estimated by the ANN must be the same as the actual rotor speed. 
During transient states, there is a difference between the actual rotor speed and the 
speed estimated by the ANN, even if there is no mismatch between the actual and 
identified parameters of the induction motor. In these cases, the errors εd and εq are not 
zero, and they are used to adjust the weights of the ANN. 

Otherwise, when there is any mismatch between the actual and identified 
parameters of the induction motor, then the errors εd and εq are not zero in the steady 
state. Consequently, the actual rotor speed is different from the estimated rotor speed. 
Taking into account the constant magnetizing level of the induction motor (constant 
mutual inductance), the difference between the actual and the estimated rotor speed can 
be caused by the following two reasons: 

a) incorrect rotor resistance identification (incorrect inverse rotor time 
constant); 

b) incorrect stator resistance identification. 



 Neural Network for Identification of Induction Machine Parameters  145
 

 
4. ANN FOR ROTOR FLUX ESTIMATION 
 
The stator resistance is an important parameter for inverse rotor time constant 

identification, especially in the low speed region. When the stator resistance is 
incorrectly identified, then the inverse rotor time constant is incorrectly identified as 
well. As a result, there is a mismatch between the actual rotor speed and the estimated 
rotor speed in the steady state. 

When the stator resistance is correctly identified, then there is no mismatch 
between the actual rotor speed and the estimated rotor speed, and the inverse rotor time 
constant is correctly identified. As a result, the stator resistance tuning can be done 
either by a manual tuning procedure observing the difference between the actual rotor 
speed and the estimated rotor speed or by an automated fuzzy logic principle as will be 
described. 

There are many methods for estimation of the rotor time constant. One group 
of online rotor time constant adaptation methods is based on the principles of MRAS. 
This is the approach with relatively simple implementation requirements. Replacing 
the actual rotor flux space-vector Ψr with the estimated rotor flux space-vector Ψr, in 
equation (1), and rewriting equations (1) and (2) in the α, β reference frame (ωe=0), 
yields: 
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where K1 is an observer gain. 
A hat above a symbol in (7) and (8) denotes identified parameters. Equation 

(7) gives an estimation of the rotor flux space-vector based upon easily measured stator 
currents and rotor speed. This estimation mainly depends on the accuracy of the 
inverse rotor time constant identification.  

Equation (7) presents an adaptive model of the rotor flux estimation [5]. On the 
other hand, (8) gives an estimation of the rotor flux space-vector based upon measured 
stator currents and the reconstructed voltage space-vector from the measured DC link 
voltage and the inverter driving signals.  

Equation (8) is independent of the inverse rotor time constant and, accordingly, 
can be used as the reference model of the rotor flux space-vector estimation. This 
estimation mainly depends on the accuracy of the stator resistance identification.  

The error signal of the rotor flux magnitude of the two estimators is applied to 
drive an adaptive mechanism (PI) which provides correction of the inverse rotor time 
constant. 
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 5. CONCLUSION 
 
 Induction motors have a unique and important role in industry and electricity 
generation. Their main advantage is the elimination of all sliding contacts, resulting in 
a very simple and rugged construction. Induction machines are built in a variety of 
designs with ratings from a few watts to tens of megawatts.  

Because of their nonlinear nature, induction motors are somewhat difficultly 
controlled. Considering that artificial neural networks are capable of handling time 
varying nonlinearities due to their own nonlinear nature, they are suitable for 
application in induction machine systems. 
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